

Application News

No. SSK-GCMS-2002

GC-MS

Gas Chromatograph Mass Spectrometer

HS-GCMS를 이용한 먹는물 중 할로아세틱에시드류 분석

(Analysis of Haloacetic acids(HAAs) in Drinking water by Headspace-Gas chromatography Mass spectrometry (HS-GCMS))

그림 1. HS-GCMS System

할로아세틱에시드(Haloacetic acids, 이하 HAAs)는 물 중의 박테리아 및 다른 병원성 미생물 등을 죽이기 위해 염소 소독공정에서 첨가된 염소와 유기물질들이 반응하여 생성하는 염소소독부산물로써 HAAs에 장기간 노출될 경우, 간, 신장 및 폐 등에 질병을 유발할 수 있다. ¹⁾ 또, 미국환경보호청 (US EPA)에서는 잠재적인 인체 발암물질로 간주하고 있으며, 'US EPA method 552.3' ²⁾을 통해서 HAAs의 분석법을 제공하고 있다. 국내에서도 '먹는물 수질공정시험기준(국립환경과학원 고시 제2018-66호)'³⁾에서 디클로로아세틱에시드 (Dichloroacetic acid, 이하 DCAA), 트리클로로아 세틱에시드 (Tri-chloroacetic acid, 이하 TCAA), 디브로모아세틱에시드 (Dibromoacetic acid, 이하 DBAA)를 수질기준항목으로 지정하여 규제 하고 있으며, '먹는물 수질감시항목 (환경부고시 제2019-81호)'⁴⁾ 에서는 모노클로로아세틱에시드 (Monochloroacetic acid, 이하 MCAA)와 모 노브로모아세틱에시드 (Monobromoacetic acid, 이하, MBAA)를 감시항목으로 지정하여 지속적으로 모니터링하며 관리하고 있다.

이를 위해 현 시험법에서는 물 시료를 용매로 추출한 후 유도체화를 거쳐 기체크로마토그래프-전자포획검출기(GC-ECD) 또는 기체크로마토 그래프-질량분석기(GC-MS)를 이용하여 분석하는 방법으로 되어 있으나, 본 뉴스레터에서는 용매 추출 과정 없이 전처리를 간소화하고, 분석 시간을 단축할 수 있는 헤드스페이스-가스크로마토그래프 질량분석기(HS-GCMS)를 이용한 분석법을 소개하고자 한다.

■분석 장비 및 세부 분석 조건

HAAs 분석을 위한 장비는 〈그림 1〉과 같으며, 세부 분석 조건은 〈표 1〉과 같다.

표 1. HS-GCMS 분석조건

Headspace system	HS-20
Measurement mode	Loop
Oven Temp.	90 ℃
Heating Time	50 min
Sample Line Temp.	195 ℃
Transfer Line Temp.	200 ℃
Shaking level	Level 3
Injection Time	0.5 min

GCMS system	GCM	GCMS-QP2020NX						
Column	Rtx-6	Rtx-624 (60 m x 0.25 mm x 1.4 µm)						
Injection mode	Split	Split (10:1)						
Column flow	1.5 m	1.5 mL/min						
Purge flow	3 mL	3 mL/min						
GC Temp.	80 ℃	80 °C (3 min) - 20 °C/min - 230 °C (9.5min)						
Ion Source Temp.	200°	200℃						
Interface Temp.	230 °	230 ℃						
Acquisition mode	SIM	SIM						
	No.	Compound	Quantitative Ion	Qualitative Ion				
	1	Monochloroacetic acid (MCAA)	49	64, 77				
	2	Monobromoacetic acid (MBAA)	93	95, 72				
	3	Dichloroacetic acid (DCAA)	83	63, 59				
	4	Trichloroacetic acid (TCAA)	82	119, 59				
	5	Dibromoacetic acid (DBAA)	173	171, 107				

■분석 결과

1. 검량선

HAAs의 검량선 작성을 위해 22 mL 헤드스페이스 바이알에 정제수 4 mL와 가수분해 시약 황산수소나트륨(NaHSO $_4$) 5 g, 유도체화를 위한 메탄올 0.5 mL 를 넣은 후, HAAs 혼합표준용액 10, 20, 50, 100, 200, 500 ng/mL 를 각 0.5 mL 씩 첨가하여 최종 농도가 1, 2, 5, 10, 20, 50 ng/mL가 되게 하였다. 이와 같이 조제한 표준물질을 캡으로 완전히 밀폐시킨 후, HS-GCMS를 이용하여 분석하였다. 각 성분에 대한 검량선은 〈그림 2〉 와 같으며, 직선성은 모두 R²=0.999 로 나타났다.

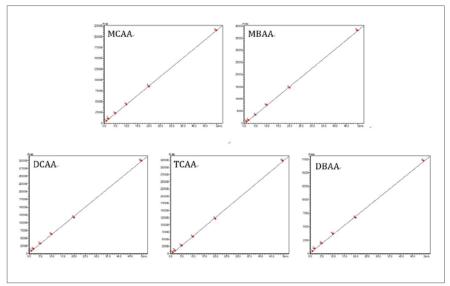


그림 2. Haloacetic acids (HAAs) 검량선

2. 정확도 및 정밀도

정확도 및 정밀도의 확인을 위해 10 ng/mL 농도의 시료를 6 회 반복 측정한 결과를 이용하였으며, 크로마토그램은 〈그림 3〉과 같다. 그 결과는 〈표 2〉에 보는 바와 같이 정확도는 86.2 % ~ 95.4 %, 정밀도는 3.0 % ~ 6.0 % 수준으로 먹는물 공정시험기준의 정도관리 목표치인 정확도 75 % ~ 125 %, 정밀도 상대표준편차(% RSD) 25 % 미만에 적합한 수준인 것으로 나타났다.

표 2. 정확도 및 정밀도 측정 결과 (10 ng/mL, n=6,)

No. 성분 -		측정값 (ng/mL)						정밀도	정확도	
	<u>от</u>	#1	#2	#3	#4	#5	#6	(ng/mL)	(% RSD)	(%)
1	MCAA	9.7	9.5	8.9	9.9	8.9	9.8	9.4	4.8	94.4
2	MBAA	9.2	8.8	8.3	9.1	9.2	9.0	8.9	3.8	89.3
3	DCAA	9.6	9.4	8.6	9.8	8.7	9.8	9.3	6.0	93.1
4	TCAA	10.2	9.5	9.7	9.2	9.4	9.2	9.5	4.0	95.4
5	DBAA	8.5	8.4	8.3	9.0	8.7	8.8	8.6	3.0	86.2

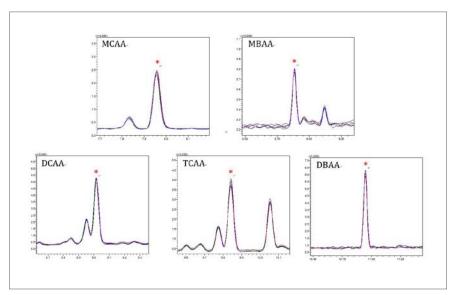


그림 3. 10 ng/mL 반복 측정 크로마토그램 (n=6)

3. 검출한계 (LOD) 및 정량한계 (LOQ)

HAAS의 검출한계 및 정량한계는 검량선의 가장 낮은 농도인 1 ng/mL 측정 결과의 S/N비를 이용하여 산출하였으며, 그 결과와 크로마토그램은 아 래 〈표 3〉, 〈그림 4〉와 같다.

No.	Compound	R.T(min)	Area	S/N	LOD (ng/mL)	LOQ (ng/mL)
1	MCAA	7.96	5,570	147	0.02	0.07
2	MBAA	8.89	678	17	0.18	0.58
3	DCAA	9.02	9,172	70	0.04	0.14
4	TCAA	9.85	5,493	116	0.03	0.09
5	DBAA	10.96	428	19	0.16	0.51

표 3. HAAs의 검출한계(LOD) 및 정량한계(LOQ)

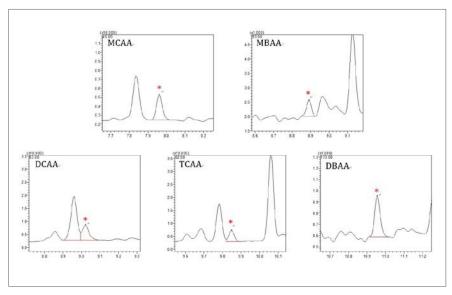


그림 4. HAAs 크로마토그램 (1 ng/mL)

■결론

본 뉴스레터는 HS-GCMS를 이용하여 국내 '먹는물 수질공정시험기준' 및 '먹는물 수질감시항목'에서 관리하고 있는 HAAs 5성분(MCAA, MBAA, DCAA, TCAA, DBAA)에 대해 동시 분석법을 검토하였다. 기존의 용매추출시험법과 비교했을 때, 전처리 과정을 간소화하여 전체 시험 시간을 단축 할 수 있었으며, 검량선의 직선성, 정확도, 정밀도 및 정량한계 등도 '먹는물 수질공정시험기준'에서 요구하는 적합 범위 내에 있는 것으로 확인되었 다.

■참고 문헌

- 1. New Hampshire Department of Environmental Service, Haloacetic Acids (five) (HAA5): Health Infor-mation Summary, Environmental Fact Sheet, ARD-EHP-36, 2018
- 2. Determination of haloacetic acids and dalapon in drinking water by liquid-liquid microextraction, deri-vatization, and gas chromatography with electron capture detection, US EPA Method 552.3, 2003
- 3. 먹는물 수질공정시험기준 (국립환경과학원 고시 제2018-66호)
- 4. 먹는물 수질감시항목 (환경부고시 제2019-81호)